Chapter 3 Trees 
Section 1 Trees 
 #Leaves
 1 + (arity  1)*(# internal nodes)
 Balanced Tree
 Height = ⌈Log _{arity} #Leaves⌉

Section 2 Spanning Trees 
 Spanning Tree(G)
 Subgraph(G) that's a tree w/ all of G's V's

Chapter 4 Networks 
Section 1 Shortest Path 
 Method
 Dijkstra. SPT(A)≠SPT(B)

Section 2 Minimum Spanning Trees 
 Kruskel's Method
 Choose the cheapest edge not in the tree
 Prim's Method
 Choose the cheapest edge connected to the tree

Chapter 5 Counting 
Section 2 Simple 
 P(n,r)
 rpermutation=n!/(nr)!
 C(n,r)
 rcombination=P(n,r)/r!=(ⁿᵣ)

Section 3 Repetition 
 P(n;r₁,...,rm)
 # of dist of n obj if ∃ r_{n} of type n
 ((ⁿᵣ))
 C(r+n1,r)

Section 4 Distributions 
 ((ⁿᵣ))

 # of ways to select r obj w/ rep from n dif types
 # of ways to distribute r id objects into n dif boxes
 # of nonnegative integer solutions to x₁+...+xn=r

 Arrangement  Combination 
No repetition  P(n,r)  (ⁿᵣ)FermionCommitteeCards 
Unlimited repetition  n^{r}  ((ⁿᵣ)) = BosonNonconsDice 
Restricted repetition  P(n;r₁,...,rm) Dorms. Mississippi  1 
